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The problem of time-optimal control is considered in the case where the controlling
forces are bounded in magnitude and in impulse at the same time, The study is carried
out with the aid of attainability domains, The case where the boundaries of these do~
mains have plane portions and corners is considered, The problem of optimal control
synthesis is solved for certain second-order systems with the indicated reswrictions im-
posed on the controlling forces,

1, Statement of the problem, Let us consider the control system described
by the following linear matrix differential equation with real constant coefficients:

dz/dt = Az + Bu (1.1)
Here z = || z; ||, 4 = |l a;;|l, B =|]bis|, u = || us || are matrices of order

(n x1), (n xn), (n xr), (r x 1) ,respectively, and us = us (t) is a measur-~
able function of time which satisfies the following restrictions simultaneously :

lus ()< M, (Mg = const > 0) (1.2)
oo
(lwldr<ce @ =const>0) (1.3)
0

By b (s =1, ...,r) we denote the sth column of the matrix B (b, = 0 for all s = 1,
-=» 7). Condition (1, 2) expresses the boundedness of the controlling force, and condition
(1. 3) expresses (from the physical standpoint) the boundedness of the impulse of the
controlling force, Inequality (1.3) in certain cases represents the limitation of the pro-
pellant capacity of a thruster,

We shall consider the problem of bringing system (1. 1) to the origin in the minimum
time by means of a control which satisfies conditions (1.2), (1. 3) (e. g. see [1], and,
among other things, the problem of synthesizing the time-optimal control,

When restriction (1.2) alone is imposed, the time-optimal control is, as we know
[2—5], a relay control (we denote the minimum time in this case by 6 = 6 (z)) . The
problem of synthesizing such a control consists in splitting the space X, composed of
the phase coordinates r,, ..., Z, by the switching surfaces into domains in which the
controls us (t) assume the values Msand —M, (s = 1, ..., r). Once this splitting
has been effected, the optimal control is known as a function of the phase coordinates
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U= u' (z.

The statement of the problem is altered when restrictions (1. 2) and (1, 3) are both
imposed, In this case the optimal control at the initial instant depends not only on the
initial-state vector 2°, but also on the vector C° = || C,°)], i.e. u = u (2°, C°). At
a present instant  we have u = u (z, C), where Z is the state of the system at the
instant £, and where the vector ' = || C, || characterizes the restriction on the impulse
at this instant, 0

S;us(r)[dtgic3 (s=1,...,71
t
Let us introduce the coordinate r,4, (s = 1, ..., r) defined by the differential equa-
tion dr
"'&t;:i = ! u, (1) f
The solution of this equation is of the form
Tnas ()= Zna (0)— Y 2, (1) dv

0
Let z,,s (0) =C " Expression (1. 3) then yields

o
$ e (9) 17 < 2 ()
t
i.e. the quantity Z,,s (f) characterizes the impulse or the "propellant capacity” of the

engine which produces the force u, at the present instant ¢,
The problem of synthesizing the optimal control consists in constructing the function

U = U (Zy, ...y Tpy ZLny1r -+-) Lnyr)- IUis easy to see that in the domain
1
e(xh'--ixn)g‘ﬁf‘xm-s (s=1,...,r (1.4)
8

of the space X, consisting of the phase coordinates I,..., Z, and the cocrdinates
Zp,1s ---y Znpsr the optimal control does not depend on the coordinates z,, s (s= 1,

“+e, 7), Synthesis in this domain, i, e, in (1.4), can be effected by means of the function
u = u {z).

2, Attainability domains, The solution of Eq. (1.1) is of the form
t

z(t) = eAtz® 4 { eat-0Bu (v) dv (2.1)
¢
Let z (t) = O for¢ = T. Equation (2.1) then yields
T
— 2 = Se“A’ Bu(t)dr (2.2)
Suppose that T 0
S} u, (v) | 4T << Tpys = cONSL (s=1,...71) (2.3)

]

We denote the set of measurable functions w, (¢} which satisfy conditions (1,2) and
(2.3) by Q, (T). The set of vector functions u (t) = || us (£)||such that u. () = Qs (T
we denote by Q (7). We also introduce the notation

r T

T
vy (1) = e avb,u, () dr, p (M) =D v, (T) =4 Bu(mydr (2.9

§==1 0
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and consider the attainability domains

r

QN =M wuMEAUM) 0N =20 () ={T:uB=AT)
s=1

in the space X, .

Each of the sets Q, ('), and therefore the attainability domain Q (7'), has the follow-
ing properties,

1°, Closure, 2°, Convexity., 3°, Qs (T) "grows™ with growing 7', L,e. Q, (7)) E
& Qs (Ty) if T, << T,. 4°. Symmeuy with respect to the origin,

Property 1° follows trom the fact that the set @, (7) is a linear map of the set Q; (7),
which is weakly compact in itself in the space L, [0, 7], The latter can be proved by
making use of the fact that a sphere is weakly compact in itself in the space L, {0, T]
(see [6]). Properties 2°, 3°, 4° can be proved easily [3, 7, 8],

Let us take an arbitrary unit vector 7} (1 X 7} and construct the support hyperplanes
of the set Q (T') orthogonal 1o the vector 1. Properties 2° and 4° imply that there are

two such planes and that they are symmetric to each

other with respect to the origin (Fig, 1), The distance
d, (T) from the origin to these planes is given by the
i 8, 9 ‘
7 expression [8, 9] r (2.5)
&,(T) d,(T)= max (q(T))= max Q ne-4*Bu (1) dt
wnf \7 HTHEQUT) wnEa() §
& Properties 1° and 2° imply that the set Q (I') consists
of those and only those points = whose coordinates satisfy
\,? the inequalities [ne J <d, (T) (2.8)
Fig. 1 for all possible unit vectors 1.

The definition of the set @ () implies that system
(1.1) can be brought to the origin in the time 7' if and only if 2° € Q (7). By taking
the limit as T — oo in relations (2, 5) and (2. 6), we can find the controllability domain
Q [8], i, e, the set of points of the space X, from which the system can be brought to
the origin by means of a control which satifies conditions (1.2), (1. 3).

3. Determination of the distances d, (7). If the function u (f) is
subject to restrictions (1,2) (restrictions (2. 3) do not apply), then the integral

r r T
T, T) =3 T, @, T) = X {ne-avbu, (1) dv (3.1)
=1 s=1 0
attains its maximum under the control
Us (t) = M, sgn [ne=4h,] (s=1,....7) (3.2)

If M.T << zp.s (s=1, ..., 1), then the control defined by (3. 2) satisfies the rela-
tion u (f) & Q (7).
Now let us consider the problem of the maximum of the functional J, (1, n, 7)
under the assumption that
M T > Zps 3.3)

We introduce the notation
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E% = {t = (0, T]: |ne-4'h,| > 3.} (5, = const) (3.4)
F’ = {t = {0, T]: | ne-4%b, | = 6,}
G* =t [0, T]: [ne b, | <o} (B + G = [0, T}) (3.5)

M, sgn{ne-4'h] for t = E*

u, (t, Ss) == (36)

(e
for t=G?®

By p® we denote the Lebesgue measure [10] of the set @ = [0, T1.

The function ne~4th, is analytic, Hence, either | ne-4'b, | == 5, for some S, >> 0 for
all t= [0, T'],s0 that E% = F% = [0, T], uE® = uF% = T ,or for all 3, >0
the equation |me-4’b,| =G, is valid only for a finite number of points = {0, T]
so that pF° =0,

First,suppose that uF% = ( for all o, > 0. It is easy to show that in this case the
quantity £ varies continuously and monotonically from T to 0 as the quantity 0s
varies from the minimum value of the function | ne~4!b; | in the interval [0, T to-its
maximum value in the same interval, Condition (3, 3) implies that there exists a unique

0,° for which o ® 1
.1 }],E 8 st Ms xn+3 (3.7)

From (3. 6) and (3. 7) we see that u, (£, 6,°) & Q. (7). In [8, 11] arguments similar
to those used to prove the von Neumann-Pearson lemma [3, 7] are adduced to show that
the control u (¢, 0,°) (and only this control) maximizes the functienal J, (u, v, 7).

Let us assume now that PF°* = T for some o, > 0,1i.e. that

ne~4'b, = D, = const (6 = | D, )

In this case all the controls from the set ®, (v, 7') of functions satisfying inequality

{1.2) and the conditions T
[Dsu, (t)l >0, Sus (r)dtv = Znis SEN D,
are maximizing controls, o

We note that expression (3, 2) follows from (3, 8) for g, == 0, For this reason we can
assume thag. for M,T < z,,, the maximizing control is u, (¢, O5’), where
6’ =0 (E* =1[0, TD.

we obtain the following expression for the distance dy (T):

ATy =23 M, § |neacb,|dv (3.8)
g=1 EG;

1t can be shown that the distance d, (') is a continuous function of the vector 1} and
of the quantity 7. From this and from inequalities (2, 6} we conclude that the sets
Q. (T) and Q (T)have the following "continuity” property,

5°, If the point v is an interior point of the set Q, (7'), then there exists a T, << 7,
such that v = Qs (T)).

We note that Property 5° can be proved by a method quite similar to that used in [5]
(p. 88) to prove the analogous property under restrictions of the type (1.2) only,

4. Plane portions of the boundaries of the attainability domains
Q.(T) and Q(T). Substituting into (2. 4) the controls us {£) which maximize the
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functionals J, (u, n, I) (s =1, ..., 1), we obtain the vector » (T')of the coordinates
of the point which is common to one of the two support hyperplanes and the set Q (7)
(the point of tangency). Here v, (I') is the vector of the coordinates of the point of tan-
gency of the set Q, (') with one of the support hyperplanes of the set Q, (T) orthogo-
nal to the vector 1.

The set @ (7) has a unique point of tangency if and only if all the sets Q, (T) (s =
= 1, ..., r) have a unique point of tangency, If the equation which maximizes the
functional J5 (4, §, T') is uniquely defined, then the set Qs (T') has a unique point of
tangency, The maximizing control us (£) is defined ambiguously in the two cases

ne~4th, = D, = const == 0, M, T > Znas (4.1)
ne~Ath, == 0 (4.2)

In the simplest case (4,2) the functional J, (4, 1, T) = 0 for any controls u, (#).
In this case the set Qs () belongs entirely to the plane nz = 0. A vector 7 for which
condition (4, 2) holds exists if and only if [4, 12] the rank ps of the mawix W, = || b,,
Abg, ..., AV, || is smaller than n. The set Q, (T') belongs to the subspace X, of
dimension ps,The same situation obtains when restrictions (1,2) alone are imposed,

In case (4.1) all the controls Us (£) & @, (1, T) are maximizing controls, The set
P, (n, T) of points of tangency is defined by the expression

P,(n, T)={v,(T): u,()Ew,( T)}

This set belongs to some hyperplane II, () orthogonal to the vector 7.

The set P, (1, T) has Properties 1°, 2°, 3°, It is easy to show that the set P, (1, T)
is ( ps — 1)-dimensional, For example, if ps = R, then the n-dimensional boundary
of the set (T) contains (n — 1 )~dimensional plane portions, i, e. the set Q. (T
is not strictly convex, This situation cannot exist if restrictions (1, 2) alone are imposed,
consequently the set Q, (T) is always strictly convex [5].

The set P, (1, T) has Property 5°. In other words, if ¥ is an interior point of the set
Py (v, T) in the plane II, (n).then there exists a T) << T such that v & P, (1), T}y).

Let us take an arbitrary point belonging to the boundary in the plane II, (1)) of the
set P, (n, T) and construct a support hyperplane of the set P, (1, I') at this point,
There is an infinite number of such planes in the space X,, . Among them is a plane
7 such that the vector 0’ orthogonal to it varies arbitrarily little from the vector 1) but
does not coincide with the latter, It is possible to ensure that

sgn [n e4/b,] = sgn [ne~4/'b,] =sgnD,  for t€I0,7]

Hence, for vectors 1" sufficiently close to the vector 1| the controls u, (f) & Q. (7)
which maximize the functional J, (4, 1, T) also belong to the set w, (m, 7). The
points p, (T) resulting from these controls belong to the set P, (v, T).

The support hyperplane of the set @, (') which is orthogonal to the vector ' cannot
lie closer to the origin than the plane 5, On the other hand, this support hyperplane can-
not lie further than the plane &t from the origin, since it contains points from the set
P, {n, T). Hence, this support hyperplane coincides with the plane 7.

We have thus proved that a nonunique support hyperplane of the set Q, (I') exists at
the boundary points of the set P, (1, I'); in other words, the boundary points of the set
P; (m, T) are "corner points" for the boundary of the domain Q, (7).

The dimension of the set @ (T') is equal to the rank R of the mamix W = || Wy, ...
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vees Wr |, i.e. the set Q (T) lies in some subspace Xp of dimension R,
Suppose that for some vector ) & Xg conditions (4.1) hold fors = 1, ..., r; and
conditions (4,2) for s = r; -1, ..., r. We introduce the notation

P,Ty=P,(n,T), P,MT)=0Q,(T) (s=ri+t.e..n
samy

The distance dy (T) does not depend on 1 ; we denote this distance by dy, (dy == 0).
The set P (M, T) lies in the plane II (n) (2 = d,). Its dimension does not exceed
R — 1. Theset P (n, T),as the set P, (g, T), possesses Properties 1°,2°, 3°, 5°,
The boundary points of the set P (n, T) are corner points for the boundary of the domain

Q.

8. The optimal control, Letthe initial state 2° & Q & Xp. We denote
by T° the minimum value of T for which z°c=Q (T)).1In other words, T is the minimum
value of T for which there exists a control u (£) € Q (T) such that relation (2,2)
holds, Property 5° of the set Q (T) implies that the point 2° belongs to the boundary
of the set Q (T°). Let us construct in the space Xy the support hyperplane of the set
Q (T°) which passes through the point z°. This plane splits Xp into two half-spaces,
Let &= X be the vector orthogonal to this plane and directed into the half-space
where the set Q (7°°) is situated, The time-optimal control clearly maximizes the
integral J (u, n®, T°).

Suppose that for all § == 1, ..., r the control which maximizes the functional
Js (u, 1, T°) is defined ambiguously, i. e, that

neAtb,m DP = const 0,  M,T >z, @=dird)
NWeAth, =0 g=rV+1,...,7

Then z° € P (n®, T°) & II (n®). Property 5° of the set P (3™, T) implies
that the point 2° belongs to the boundary of the set P (), T), i, e, that it is a corner
point of the boundary of the set Q (7°). This means that at the point Z° we can con-
struct another support hyperplane of the set @ (7°) with the orthogonal vector 1 &
& X (n® =k n), If the maximizing controls for all s are defined ambiguously for
the vector 1\** as well,then 2° = P (n®, T°) & II (n®), where II (y(®) isa
hypetplane which does not coincide with II (n(). This means, in tumn, that the point 2°
belongs to the set P (q®, T°) x P (@, T°) of dimension not higher than R — 2 ;
moreover, it belongs to the boundary of this set, This makes it possible to construct at
z° another support hyperplane of the set Q (T°) with an orthogonal vector 7¥ & X3
(the vectors 1), 1(®), n(® are linearly independent). Suppose that by continuing this
process we have succeeded in constructing the linearly independent vectors 1" € Xr
(k = 1, ..., R) for each of which

n(k)g-Atb‘ = ng) == const .# 0, M,T° > Znes (s==4,..., r(lk))

nMeath, =0 g=rre,....0

since by== 0 (s = 1, ..., 7), it follows that for every s there exists a & for which
nMe-Ath, g 0. Then M,T° > Znisfor s = 1, ..., r; in other words,

T°>N = max (Zn.JM,)
1<
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The set Qs (T) (s = 14, ..., ¥} is a segment which "grows” as I varies from 0 10
Zpss | M,, and remains constant for T 2> Tnss / Ms, The set @ (T) is a polyhedron
which does not depend on T for I' 2> N. From this we infer that the optimal time
T° << N, which contradicts what we said previously, Hence, in constructing the vectors
n*) we encounter a k << R such that the maximizing control remains uniquely defined
for at least one value of the index s. Let this control ¥,° (¢)(which is optimal) be
defined uniquely for § = 1, -++y T1. As is evident from Sect, 3 of the present paper, the
control u,° () = us (¢, 6,°) (s =1, ..., ry) is defined by relations (3,4)~(3.6) in
which T’ = T°,

If ry = r, then the optimal control is defined completely, let us suppose that iy <
and find the controls u,® (1) (s = r; + 1, ..., 7) for which Eq, (2,2) holds when T = T°.
To this end we substitute the resulting functions »,° (t) (s = 1,..., ry) into (2,2) and
replace (2, 2) by the relation

e 4% u? (%) d-r) (5.4)

r T 12 T

—E% = 2 S e“’A’bsus (0 dr (Eo = 2° -} 2 Eu ﬁ, = )
smret1 0 ‘ st 0

The set r
Q"= 3 @,

Swer b1
has Properties 1°—5°, We denote by T the minimum value of I for which §* € Q™ (T);
clearly, T! < I*. The point }° belongs to the boundary of the set Q™ (7). As above,
we can prove that there exists a support hyperplane of this set which passes through the
point £°with a vector n such that the maximizing control is defined uniquely for at
least one of the sequence r, -+ 4, ..., r of values of the index s, If the maximizing
control can be defined uniquely for all s= r; + 1, ..., r then the controls which realize
Eqs, (5.1) for T = T° can be taken in the form
{ U, (¢,5,%) for 0t !

0 for Mgt

Here the function u, (, 6,°) (s = r; + 1, ..., r) is defined by relations (3.4)—(3. 6) in
which T' = T4,

For 7' < T* the conwols u(t) (s =r; + 1, ..., r) which realize Eq, (5,1) for 7 = T°
are not unique and can be defined not only by means of formula (5, 2),

If the maximizing control is uniquely defined only for s =r, + 1, ..., 1, (o, < 1),
then to determine the controls u,° (#) (s = r, + 1. .... ) we must substitute controls (5.2)
for s =ry + 14, ..., r, into (5,1) and develop an argument similar to that above, Pro-
ceeding in this manner, we can find all the controls u,° (#) (s = 1, ..., r) which realize
Eq. (2.2) for T = T°, and thereby determine the optimal control for the state z°,

Thus the optimal control u,° (f) assumes the values —M,, 0, M,. The problem of
synthesis consists in splitting the space X, by the switching surfaces into domains in
which the control assumes the appropriate values,

us' (1) =

(5.2}

8, Second~order systems (*®).Consider the system

*) The following students participated in developing the expressions appearing in this
section: A, Ershov, V. Trofimov, S, Naumov, N, Gorushkina and V, Karandeev,
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T =Ty, Zy = ATy +VZ +u (6.1)
Here r = 1, so we omit the index s, Without limiting generality we can assume
that M = {,
First let A = v = ( ; then we have
ne4h =sing —2cos @  (cos @ =y, sin g = n,) (6.2) -
Let us construct the attainability domain Q (T) for T > z,.

Let @ ==}/, n. Canying out some elementary operations, we find that the set £%°
consists of the segments

[T~ zg, T] for tgcp<1/2{2‘--x3)
[0, 1gp — Yo (T — zy)ly {189 + Yo (T — 24)y T} for Y, (T —2) <180 K Yo (T + 29)
[0, z4] for 1/, (T + 25) < tg9

Hence we find that

if — << o <<aretg [y (T — z)hy (6.3)
0 for 0t T — 13

u(t,c°}={ 1 for Tm st (6.4)

if . arctg [y (T = 25)} < @ < arctg [V, (T + z,)}, (6.5)
1 for 0t <tgp — Y2 (T — 29)

u(i.6°)={ 0 for tg@ — Yo (T —2) Kt P +12(T — 1) (6.6)
—1 forigo+2(T —2z)St<T

if aretg [ (7 + 29| < @ <hn, 6.7
o__'i for 0£t$33

u(t,s}—{ 0 for st T 8

For 1/, n < @ < ¥,n the control u {¢, 0°) can be obtained by multiplying functions
(6.4),(6.6), (6. 8) by =1, Thus, by virtue of the monotonousness of function (6. 2) it turns
out that the control u (¢, ¢°) assumes on [0, T} each of the three values—1, 0, 1 not
more than once,

For the distance g » {T) we obtain the expression

Ya2g (2T — 23) CO8 @ ~— 23 SiR @ under condition (6, 3)
(tg @ — T)sin @ + Y [T2 — Y3 (T — z2)®}cos @  under condition (6, 5)
d, ()= : (6.9)
" z3 8in @ ~ fyzs? COS @ under condition (6, 7)
za for @m=t-ifant

The boundary of the domain Q (T) is the envelope of the straight support lines, This
envelope can be readily determined from expression (6, 9). It turns out that the domain
Q (7) is bounded by the two straight lines

Ty = = Ty (6.10)
and by the two parabolas
z =4 [y (2, F DB F Y, (T2 — Yy (T = z4)?
Figure 2 shows the domains Q (T) at T =1.0, 1.5, 2.0 forzs = 1. At T > &3

the boundaries of these domains have two plane portions and four corner points, The
controllability domain ¢ which results from @ (7} as T~ oo is the set of points
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lying between straight lines (6.10). Moreover, the domain @ includes the straight-line
z segments
1
w8 ¢ 1 5 < —Ys 2?, T, =2,

p 7 >V, 2%, Ty=—z5 (6.11)
\w - (the thick segments in Fig, 2),
\ - For points belonging to Q (T) for T << 25,
\ \ 7 % the optimal control is a pure relay control
e~/ an and the switching line is the curve [5]
A5\ a(p) z=—"hz |zl  (6.42)
7 Py Making use of expressions (6, 3)—(6, 8), we
can find the value u (¢, 0°) of the optimal
control for ¢ = (), which enables us to solve
the synthesis problem, It turns out that
u (0, 6°) = 1 on the set of points satisfy-
ing the conditions
<=tz lz|<zy (6.13)
or the conditions (6.14)
==z |a —2<1,<0
On the set of points satisfying the conditions
5 < —1y zs, - Ty = zg (6.15)
we have u (0, ¢°) = 0. Since the phase
portrait of an optimal system is symmetric
with respect to the origin, we can readily find
u (0, ¢°) at the points symmetric to the
points of set (6,13)~(6.15). Figure 2 shows
one of the possible optimal trajectories (curve
Fig. 3 ABCO).

Considering relations (6, 10)-(6.15) in the
half-space 2y = 0 of the space Xyand knowing the value of u (0) at each point of this
half-space, we can visualize the complete pattern of optimal control synthesis, Figure
3 shows the synthesis pattern and the possible optimal trajectory ABCO (Fig. 2 shows the
projection of this wajectory on the plane z; = 0).

Now let us consider system (6, 1) for A == 0, v = 0. In canonical variables (for which
we retain the symbols x, and z,) this system assumes the form
tl4= lzl + Zy, ‘z =u

Omitting the details presented in our analysis of the case A = 0, we shall merely
describe the results,

As in the case A = 0, the domains @ (T) for T > z, have two plane portions and four
corner points, For A < 0 the controllability domain ( consists of points satisfying the
condition J 2y | < 24 (6.16)

and also of points belonging to certain portions of the boundary of set (6,16), For 4 > 0
the domain @ is also bounded by the curves
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zy = — A7lzy 4~ A2 {1 exp [— Y, (25 + )1} 6.17)

The points of these curves do not belong to ¢. We shall not derive (6. 17) because of
lack of space,
The pattern of optimal conuol synthesis in the half-space z; > 0 of the space X for
A == 0. is qualitatively similar to the pattern for A = 0. The role of surface (6,12) in
this case is played by the surface [5]
Zy ==~ A7lzy <+ A7 [1 — exp (— Az, {)sgna, (6.18)

The optimal control u {2, z,, z4) == 0 at the boundary points of the set (6, 18) which
belong to the domain @ but do not belong to surface (6,18). The optimal control
u (2, T,, z3) = 1 at points of domain (6, 16) lying to one side of surface (6,18) and
on that part of surface (6. 18) which belongs to ¢ . At the remaining points of the domain
Q we have u (z;, 2, z5) = — 1.

Let us consider system (6,1) for A = 0, v < 0. without limiting generality we can
assume that v = —1, whereupon system (6, 1) becomes

Ty = I, Ty = —2, + U (6.19)
The function ne~4'b is of the form
Ne~4th = sin (p —¢t) (6.20)

In contrast to the preceding examples, the identity | ne™#'6 | == o does not hold for
any @ regardless of the value of o = const. Hence, (6, 20) enables us to define the con-
trol « (¢, ¢°) uniquely for any @,

o | Sgn{sin(p — ] for |sin{p —8)| »¢°
u(t’s)glﬁ for {sin(@ —8|<3°
and the boundary of the domain @ (T} has no plane portions,

The problem of minimizing integral (1, 3) for |u| <1 is solved in [13}for A =v =0
and in [14] for A == 0, v = — 1 , The optimal control in this problem has the same
structure as centrol (6, 4), (6. 6) and (6,21). Let

6.24)

. 25
]
1= |"x ~Zarcsins® |

(k, is the whole part of the expression in square brackets), k, is the number of zeros of
the equation |sind | == ¢°, where 8 = ¢ — ¢ in the interval [@ —T, 9]. Let us suppose
that | @ | <1/, n; then ¢° satisfies one of the following pair of relations;
2ky = ky, zq = (1 ~ 2arcsing®)k, (6.22)
2k = ky, ry = T — 2k,arcsing®
2k = ky — 1, z3 = nk; — (2k; + 1)arcsino® 4 ¢
2y = ky —~ 1, 1z T — ¢ — (2k, + 1) arcsino® {6.23)
2ky == ky — 2, z3 = T — 2 (k + 1)arcsine®

These relations can be readily established by considering Fig. 4, which shows the graph
of the function |sin 8|. This graph represents the case corresponding to condition (6, 23),
In this case the set % consists of k, segments of length & —- 2 arcsine® and of one seg-
ment of length T — @ — nk, — arcsino® (the set E°° is indicated by the thick lines in
Fig.4).

Let us find the controllability domain Q. As T —» oo we have 6® — 1, &, —> co. Let
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T — ¢ = nk, + 1/, n ; then (as we see from Fig, 4) for each fixed ¢ for sufficiently large
T the quantity ¢° satisfies relations (6, 23), After some simple operations we arrive at
the following expression for such values of 7';

T

3 i — © == i s
d (T)= S sin (@ — T) u (1, 6°) dv = (2ks 4+ 1) sin T 1
This implies that . T : zz
Thm d'ﬂ (T)—-}}xlm(zh-i-i)smw—zs

For |¢| == }/,m we obtain the same result,
Thus, the controllability domain @ is the interior of a disk of radius z4; in other words,
it is described by the inequality

NN N - p n’ + ot <z’ (6.24)

i i ! , Nl The fact that the domain Q can be

LVL ; .V nothing other than a disk also follows
T 1 & from the fact that the phase trajectories
of system (6,19) for u (£} == 0 are cir-

Fig, 4 cles, In the half-space 3 >> 0 of the

space Xy domain (6, 24) is the interior

of a cone,

Now let us consider the synthesis problem,

To this end we find on the plane X the set D, of the points z° at which the optimal
control at the initial instant is equal to zero, Let us suppose that | ¢ | < ¥/, %x. Consider-
ation of Fig, 4 then shows that u (0, 0°) = 0 for those and only those values of 7 and ¢
for which fg| < arcsino®. This inequality is valid only under condition (6, 22) or (6, 23).
To determine the set D, we must substitute function (6, 21) into (2, 2) with allowance
for conditions (6, 22) and (6.283), Making use of the symmetry of the phase portrait of
an optimal system, we find that the set of points = € D, satisfies the relations

T T
n=1= S sintu (v,6%dr, z=TF S cos tu (1, 6°) dt (8.25)
o °
Under condition (6, 22) the conmol u (¢, 0°) = 0 for
nky — aresing® + @ < t < 5k, + aresing® + ¢

Hence, as we see from (86, 25), this condition need not be considered, We therefore
assume that 7 and ¢° in (6, 25) satisfy condition (6,23). The set D, is biparametric;
one parameter is the quantity ¢ satisfying the inequality |g| < arcsine®; the other para-
meter is either 7 or ¢°. Substituting the relations arcsina® = 4 ¢ into (6.25), we obtain
the boundaries of the set D,

Setting arcsing® = ¢ and carrying out certain appropriate operations, we obtain
the parametric equations of one of the boundaries of the set D,

= F (Uit 1) 008 20 + Fyt (— 1)1 cos [z 2 (kb D ol} b= [T |

Zp = F{(k1 + 1) sin 2¢ + (— 1)**sin [z + 2 (ky + 1) 91} @ =[0,}/;m) (6.26)

Setting arcsin ¢° == —@, we obtain the equations of the other boundary of the set

gr
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Zy = F {ky c08 20 + Ky + 1 +(— 1% cos (23 — 2k1@)} (6.27)
Zp = TF {k; 8in 20 + (— 1)*+*1sin (23 — 2k,9)} @ € (— Yo #,0]

The portions of curves (8, 26),(6.27)are smooth in those ranges of @-values in which
k, remains constant,

As @ — Y, expressions (6,26) yield 7, —» °F 25, z; ~ 0; a8 ¢ — — /g expressions
(6.27) yield 23 — 4= z3, 2, - 0. For ¢ = 0 Eqs, (6,26) and (6,27) assume the same form

=Tk +14{— 1)+ cos 2], zg = T [(— 1)%*! sin 25] {6.28)

T3
k= [";;']
Setting zy = nk, + o, where 0 < a < «n, we find that
z, = J {2k, + 1 — cos aj, z, == 4~ ginq (6.29)

Here

Considering z, as a parameter, we find that curve (6, 28) or (6.29) constitutes the
switching line Z (see [5]) for system (6.19) under the condition [u] < 1 alone, Con-
sequently, for £, == const all four curves (6, 26),(6. 27) begin at the line L for ¢ = 0
and terminate at the boundary of the domain Q as|pf — Y/ .

Fig, & Fig. 6

In Fig. 5 (for Z3 = 3/,7 ) the controllability domain Q is split by curves (6, 26) ~
(6.28) into domains where the optimal control.at the initial instant is equal to~1, 0

{shaded area}, and 1,
Considering relations (6, 24), (6,26)—(6.28) inthe half-space T3 > 0, we gain a full
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understanding of the optimal control synthesis pattern, This synthesis pattern appears in

Fig. 6 (Fig, 5 shows the projection on the plane z,, z, of the cross section Zy = 3/,7).
Optimal control synthesis for system (6, 1) in the case v = 0 differs from the case

A = 0, v<< O by the fact that for v =  the set of points where u = 0 is of meas-

ure zero in the space X,

10,
11,

12,

13.
14,
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